
A Multi-Layered Image Cache for Scientific Visualization

Eric LaMar∗

Lawrence Livermore National Laboratory
Valerio Pascucci†

Lawrence Livermore National Laboratory

Abstract

We introduce a multi-layered image cache system that is de-
signed to work with a pool of rendering engines to facilitate
a frame-less, asynchronous rendering environment for scien-
tific visualization. Our system decouples the rendering from
the display of imagery at many levels; it decouples render
frequency and resolution from display frequency and reso-
lution; allows asynchronous transmission of imagery instead
of the compute-send cycle of standard parallel systems; and
allows local, incremental refinement of imagery without re-
quiring all imagery to be re-rendered.

Interactivity is accomplished by maintaining a set of im-
age tiles for display while the production of imagery is per-
formed by a pool of processors. The image tiles are placed
in fixed places in camera (vs. world) space to eliminate oc-
clusion artifacts. Display quality is improved by increasing
the number of image tiles and imagery is refreshed more fre-
quently by decreasing the number of image tiles.

CR Categories: C.2.4 [Distributed Systems]:
Client/server—parallel/distributed; I.3.2 [Graphics Sys-
tems]: Distributed/network graphics—client/server;
I.3.3 [Picture/Image Generation]: Display Algorithms—
image caching; I.3.6 [Methods and Techniques]: Device
Independence—frameless rendering;

keywords: image cache, impostors, scientific visualiza-
tion, multiresolution techniques, hierarchical tech-
niques, parallel techniques.

1 Introduction

Scientists are faced with a problem that as their simulations
grow to sizes where interesting features and structures can
be resolved, the features themselves become to small (rela-
tive to the size of the data) to find, and the structures too large

∗e-mail: eclamar@comcast.net
†e-mail: pascucci@llnl.gov

to visualize. Interactive navigation and exploration of these
datasets is essential, and small features can only be prop-
erly understood is shown in the context of larger structures,
showing both large scale structures and small scale features
in the same visualization is essential. However, the data size
prevents efficient rendering of even single frames, let alone
multiple frame per a second that is required for interactive
exploration.

Caching and reusing imagery over several frames to amor-
tize the cost of rendering that imagery is proving to be a very
useful technique. However, prior techniques are unable to
meet he demands of scientific visualization in that they ex-
pect static scenes, require significant preprocessing time and
user assistance to place impostors, and rely on pure random
chance to catch moving structures.

A significant number of scientific datasets are uniform,
cartesian grids, where the information density is very high
and uniform. Thus, tile density must be corresponding very
high and uniform. Scientific visualization methods require
user-controlled, run-time parameters that can significantly
affect visualization results; i.e., transfer-functions for vol-
ume visualization, iso-value for iso-contouring, or tempo-
ral movement for time-varying datasets. All of these require
adaptive refinement of tiles and dynamic updating of these
tiles.

We have developed our Multi-Level Image Caching
(MLIC) system to cache rendered imagery and to address
issues specific to the use of impostors for scientific visualiza-
tion. Impostors in our system are called tiles, and associate
a square image with spatial position and extent (and tempo-
ral position and extent for time varying datasets). A set of
image tiles are maintained with a single foreground process
displaying the imagery and a set of parallel processes render-
ing the imagery. Display quality is improved by increasing
the number of tiles and update frequency is improved by de-
creasing the number of tiles. Local refinement of data does
not require re-rendering all image tiles, only those tiles that
intersect the refinement region need to be re-rendered.

Our system decouples generation of imagery from the dis-
play of the imagery, and decouples the resolution of rendered
imagery from the resolution of displayed imagery. Secondly,
our system also decouples the placement of tiles from the
specifics of the data layout; that is, tiles are placed to reflect
user interest and rendering concerns.

Densely placed tiles that move with respect to the cam-
era viewpoint commonly experience occlusion artifacts; e.g.,
tiles that are supposed to be adjacent to each other can appear
to move apart, allowing a hole to form where structures that



A B

(a)

(b) (c) (d)
View (A) View (B)

Figure 1: Occlusion artifacts occur when tiles generated to
be correct from viewpoint A are viewed from viewpoint B. In
figure (a), viewpoints are red, tiles are green, the hole is blue,
and the occlusion is magenta. Figures (b)-(d) shows figure
(a) from the point-of-view; the two left tiles have opacities
of 50% (which composite to opacity of 75%), and the right
tile has an opacity of 75%

are supposed to be hidden are exposed, or adjacent tiles move
over and occlude each other, as shown in figure 1. While
these problems have been addressed in a very basic way for
opaque structures, there are not prior techniques to handle
transparent structures.

Our solution is to decompose the space around the point-
of-view into a set of convex, non-occluding (with respect to
the point-of-view) polyhedron, which are then subdivided by
a k-D tree to allow for adaptivity. The k-D tree based sub-
division of the polyhedron is constrained to eliminate occlu-
sion artifacts. Tiles are placed at the nodes of the k-D tree
and move with the point-of-view.

Our system runs on a two-processor linux workstation
and a large symmetric multiprocessor (SMP) machine. The
implementation discussed in this paper uses a cube, cen-
tered about the point-of-view, decomposed with six pyra-
mids, where the tops of meet at the point-of-view and the
bases form the six faces of the cube. Other configurations
are possible.

2 Related Work

Bethel et.al. [Bethel et al. 2000] discuss the Visipult system
- a distributed, multiresolution visualization system for time-
varying uniform, rectilinear datasets. Imagery is produced at
the brick-level and is, therefore, not independent of the data
decomposition.

There is significant amount of work [Carrozzino et al.

2001; Chen et al. 1999; Schaufler and Stürzlinger 1996;
Shade et al. 1996; Decoret et al. 1999] on use and pre-
processing of impostors for viewing extremely large CAD
datasets. Most typical applications are architecture walk-
throughs, either of individual buildings, of whole cities or
city districts. Significant preprocessing (with user assis-
tance) effort is required to find good locations to place im-
postors and to segment the model (with respect to the impos-
tor’s location) to near and far sets. Far geometry is rendered
and cached with that impostor. At run-time, near geometry is
rendered directly and the far geometry is approximated with
the caching imagery. These datasets static and are intended
to be visualized many times, so it is reasonable to spend a
large amount of preprocessing time to accelerate the render-
ing of them.

The have been numerous of specialized hardware so-
lutions to parallelize rendering of datasets. Blanke et.al.
[Blanke et al. 2000] introduces the Metabuffer, a cross-bar
compositing network of N COTS (Common Off The Shelf)
rendering machines to M display devices, where the trans-
mitted imagery includes color, alpha, and depth values, so it
is possible to composite mutually occluding image tiles. The
network can be configured to place imagery at any arbitrary
location and extent on the display devices. The hardware has
not been built; their results are derived from simulations.

Stoll et.al. [Stoll et al. 2001] introduce the Lightning-2
digital video-based compositing network, also connecting N
COTS rendering machines to M display devices. Adaptive
placement of imagery is accomplished by encoding image
location in the video signal. Lightning-2 uses digital video,
so communicating auxiliary (i.e., depth) information in the
video signal is difficult. Lombeyda et.al. [Lombeyda et al.
2001] introduces the Sepia-2 compositing network. This sys-
tem connects N COTS rendering devices in a daisy-chain,
with the output of one device is fed into the input of the
next in chain, and the final device is the display. There is no
adaptivity, and entire frames are composited pixel-to-pixel.
The network uses a central crossbar, and can reconfigure the
network with each frame. Blanke’s and Stoll’s systems do
not scale linearly with increasing input and output devices
as their network complexity is N ×M. While Lombeyda’s
system scales linearly with respect to rendering devices, but
there is a small latency at each node, which restricts the to-
tal frame rate. The SGI Onyx and Origin SMPs (symmet-
ric multi-processor) systems, equipped InfiniteReality [Mon-
trym et al. 1997] rendering engines, are a more general solu-
tion to parallel rendering. While the Onyx and Origin have
a general purpose interconnect fabric that extremely fast,
the InfiniteReality engine is significantly out-performed by
newer cards; the Onyx and Origin systems are also limited
in the total number of InfinteReality engines they can hold.
The PixelFlow [Eyles et al. 1997] is a very specialized (very
non-COTS) machine that uses a deeply pipelined composit-
ing network connected to a set of rendering engines. Data
is distributed over the rendering engines, which compute a



full frame, and ship the frame to the compositing network.
These hardware techniques show reasonable speed-ups for
small numbers of rendering engines, displays, and datasets.
However, all share the basic restrictions of being extremely
expensive, very specialized, have limited adaptivity with re-
spect to the rendered image size, and scaling is only good if
one of the dimensions (rendering engines, display size, and
dataset size) is increase, but not if all increase. These sys-
tems have an explicit notion of frames and are not tolerance
of delays or stalls in rendering engines. The faster systems
composite digital video signals, which makes it difficult to
include depth information. There are two recent commer-
cial products, SGI’s InfinitePerformance [SGI n. d.] and
HP’s SV6 [HP n. d.], which use a larger number of ren-
dering nodes, connected by a compositing network. While
neither are COTS, both seem to be more commodity- and
component-oriented than prior machines offered SGI and
HP.

There are several software techniques to decompose a
scene into layers, then display the layers from a differ-
ent, but limited set of alternate viewpoints. Mueller et.al.
[Mueller et al. 1999] allows transparent volume visualiza-
tion, but must keep track of all composited depth values, so
it can place the layers such that no gaps appear when viewing
the layers from new viewpoints. Schaufler [Schaufler 1998]
uses multiple layers to render fully opaque models. Gaps
are avoided by overlapping the spatial extents of the layers
such the the images overlap by several pixels. Layers are
re-rendered just before a gap is predicted to appear. His pre-
diction mechanism only characterizes error with respect to
camera translations and not with camera rotations about the
model. Shade et.al. [Shade et al. 1998] discuss techniques to
use layers of images (with color and depth) to approximation
complex objects. Images are reprojected on a pixel-by-pixel
basis and require a well define depth value; this this tech-
nique is only useful for fully opaque objects.

The Tapestry project by Simmons et.al. [Simmons and
Séquin 2000] renders a scene by drawing a set gouraud-
shaded triangles where the color and depth of the vertices
are calculated by a ray-tracer. Triangles are refined if they
are physically large or have large changes in color or depth.
As the user moves, sample points (vertices) that become oc-
cluded are removed from the mesh. Their technique does not
handle transparent volumes as it assumes opaque surfaces
and maintains only one layer of sample points.

3 MLIC Spatial Decomposition and

Caching Basis

The MLIC system decomposes the region about the camera’s
point-of-view into a covering set of convex, non-occluding
(with respect to the point-of-view) polyhedra. Many decom-
positions of the space around the camera are possible; in this
paper, we use a cube basis for the sake of simplicity. The

2D 3D

Figure 2: Example of a MLIC implemented on a square (2D)
and a cube (3D).

(B) (C)(A)

Figure 3: A k-D tree tile can be subdivided in two orienta-
tions in 2D (3 in 3D).

cube is then decomposed into six pyramids, with the “top”
point at the center of the cube, and the pyramid bases form-
ing the six faces. The six pyramid are, in turn, subdivided by
constrained k-D trees.

The image tiles are placed at fixed positions with respect
to the camera point-of-view, so must be re-rendered when
the point-of-view translates; they don’t need to be re-render
if the point-of-view’s orientation/direction or field-of-view
change.

Figure 2 shows a 2D and 3D example of a Multi-Level
Image Cache implemented using a square/cube as a basis.
For figure 2(2D), the red circle at the center is the camera
point-of-view, with the red lines showing the camera orien-
tation and field-of-view; black lines show the base decom-
position of the space; blue lines show the k-D tree decom-
position of each quadrant; and green lines show individual
tiles. The tiles are shown slightly smaller that their physical
extent (delimited by blue & black lines), as to emphasize that
they are independent entities. Note that the different quad-
rants have different degrees of decomposition. Figure 2(3D)
shows each of the six faces of the cube are shown in different
colors. The pyramids are scaled down by 10% to show the
individual regions. All faces have been subdivided twice.

The distance to the outer face of a pyramid corresponds to
the far-clipping plane of a viewing-frustum. Increasing and
decreasing the distance to the far-clipping plane increases
and decreases the spatial extent covered by the cache.

The k-D tree decomposition planes are either parallel to



2D Example

From the point-of-view

Outside, looking at point-of-view (red pyramid)

Figure 4: Reusing tiles as the camera turns to the right.

the cube face or pass though the origin of the cube-cache, so
there are no occlusion artifacts (compared to figure 1); i.e.,
tiles run to the boundaries of a k-D node and their end-points
do not move with respect to the camera. This is shown in
figure 3. Figure 3(B) shows the parent tile to be subdivided
in red; figure 3(A) shows the subdivision of the parent tile
into front and back tiles (with respect to the point-of-view)
and figure 3(C) shows the subdivision parent tile in to left
and right tiles.

Figure 4 shows where tiles would be reused between
frames. In the top row, the first (left) frame, a set of tiles
are rendered. The blue and green tiles are rendered for (or
before) the first frame. In the second frame (top row, right),
as the camera (shown in red) turns clockwise, an additional
set of tiles are now visible. Those shown in green are ren-
dered in both frames (i.e., rendered in the first frame and just
reused in the second). Tiles shown in blue are not visible
in the second frame, and may be deleted (if running out of
cache space). The purple tiles in the second frame are now
visible; they will be placed in a work queue to be rendered
if their imagery is invalid. The middle row shows a render-
ing of a iso-surface rendering of a Trebecular bone dataset;

Render Engine
Render Engine
Render Engine

Work Queue

Done Queue

Render Engine

Display Engine

Image Database

Shared Memory

Figure 5: The MLIC system architecture.

the initial camera position is show in the left image and the
camera has turned to the right in the right image. The bottom
row shows an outside view of the MLIC, with the point-of-
view and Field-Of-View pyramid shown in red. Tile bound-
ary color corresponds to the faces of the cube for defines the
physical cache configuration. Notice that the tiles outlined
in cyan no longer appear in the right image, and new tiles
appear on the right side of the image.

All tiles have the same fixed resolution. A tile is refined
by replacing it with a left/right, top/bottom, or front/back
tile children, where each child contains a copy of the corre-
sponding region of the parent tile. The new tiles are marked
for future re-rendered. Tiles are coarsened by removing the
children and replacing the parent’s imagery by a filtered ver-
sion of the children’s imagery.

Rotating the camera direction does not invalidate any of
the tiles, but newly exposed tiles may require rendering, and
possibly refinement. Tiles now partially exposed by to be
coarsened. Our current system does not use any error metric
for prioritizing tiles for re-rendering and visible tiles are re-
rendered in a round-robin scheme.

4 The MLIC System Architecture

The MLIC system architecture consists of a single display
engine, multiple rendering engines, a work queue, a done
queue, and an image database. The work and done queue and
the image database are placed in a shared memory segment
and the display engine and all rendering engines can directly
access the queue and image database.

The display engine writes requests to to work and receives
acknowledgment on the done queue. Render engines read
requests from the work queue, renders and writes imagery to
the image database, and writes completed tasks to the done
queue.

We currently use VTK’s off-screen rendering capability
and its ray-cast engines (both volume rendering and iso-
surface rendering) to render imagery.

The display engine just renders tiles that are both within
budget and are available. If an tile has no children, but does
not meet the rendering requirements, it is added to the work
queue to be subdivided. The display engine also reads the



Reader Writer

Writer Reader

(A)

(B)

Figure 6: Readers and writers can compare head and tail
positions to get a conservative estimate if a queue is empty
or full.

done queue to see what regions have been completed by the
render engines. When a region is completed, the display
engine notes this in the image database. This operation is
extremely small and fast, and if the generator engines per-
formed it, would require another semaphore control access.

4.1 Shared Queue Issues

We started with a very basic circular queue implementation
for the work and done queues, using two fields to record the
head and tail positions, a size field to record the available
space, and one semaphore for each queue. Both display en-
gines and render engines must block to add or remove ele-
ments from the queues. We found that this basic implemen-
tation scaled poorly; when using eight render engines and
one display engine, processes would occasionally (˜1% of
the time) block for as long as 0.5 seconds on the semaphore
to access the queue. This caused unacceptable stalls in the
display engine.

Our solution is to observe that when using queues, where
one process only writes to the queue and the other process
only reads from the queue, a reader never modifies the head
of the queue, and a writer modifies the tail of the queue, and
that a reader can only read from a non-empty queue and a
writer can only write to a non-full queue. We can conserva-
tively estimate the empty and full status of a queue by cal-
culating the distance between the head and tail of the queue.
That is, a reader may find the queue empty, even though a
writer may just added an element; similarly, a writer may
find the queue full, even though a reader has just removed
an element. When the reader access the queue’s tail pointer
and compares the distance to the head pointer, the head may
move, increasing (never decreasing) the number of elements
in the queue, thus will get a conservative estimate of avail-
able elements in the queue. A similar argument work for a
writer: reader processes will only increase available space in
a queue. This is shown in figure 6. However, parallel readers
must share and block on access the tail pointer, and parallel
writers do the same for the head pointer. Hence, the dis-
play engine never blocks on either the work or done queues
as there is only one; however, render engines must block
on both queues. As the engines take considerable longer to
complete their tasks than the display engine, they check the
queues much less often. This does imply, however, that there
is a scaling limitation on the render engines, and that a multi-

stage or distributed queuing system will be required to scale
beyond a certain point.

The only caveat is that accessing integer values on shared
memory system must be atomic, and no partial values are
returned. This model of a shared queue works correctly on
a two processor Linux boxes and a 48 processor SGI Ori-
gin3000.

4.2 Tasks

Three kinds of tasks can be written to the work queue: sub-
divide, render, and merge. In addition to the kind of task, the
task structure also contains a pointer to the associated k-D
node, which includes the spatial position and extend of the
region to be modified. When a render engine starts to service
a task, it removes the task from the work queue. When a task
is completed, it is simply written to the done queue.

4.2.1 Subdivide

The subdivide task is to take a tile and replace it with two
children tiles that cover the same extent. An tile can be split
(with respect to the point-of-view) into left/right, top/below,
or front/back tile pairs. Since all tiles have the same reso-
lution; when a left/right or top/bottom pair is rendered, the
effect is to double to number of pixels in the direction of the
split.

Tiles are displayed in back to front order with blending to
affect an OVER operation (see [Porter and Duff 1984]). So
to break a tile into a front/back tile pair, we need to set the
values in the front/back pairs such that when they are com-
posited together, they produce the same result as displaying
the parent tile. Hence, to subdivide a tile, we must compute a
inverse to the OVER operator.The OVER operator is defined
as follows:

K = C0 overC1 = C0 +C1(1−α0)
γ = α over α = α0 +α1(1−α0)

Where C1,2 and α1,2 are the input opacity-weighted color
and opacity values, respectively, and K and γ are the out-
put opacity-weighted color and opacity values, respectively.
Note that the OVER operator performs the same calculation
on each of the red, green, and blue channels. K and γ corre-
spond to the color and opacity of the parent tile, and C1,2 and
α1,2 correspond to the color and opacity of the child tiles.
We also simplify by assuming the front/back imagery is the
same, e.g., C = C1 = C2 and α = α0 = α1.

Solving for C, given K:

K = C +(1−α)C = C(2−a)

thus

C =
K

(2−α)

And solving for α , given γ:

γ = α +α(1−α) = 1− (1−α)2



2563 5123

Processors Rate Speed-Up Rate Speed-Up
1 1.48 1.00 0.73 1.00
2 2.91 1.97 2.09 2.86
4 6.76 4.57 5.74 7.86
8 12.5 8.47 11.5 15.8
16 29.2 19.7 22.3 30.5
32 63.3 42.8 45.4 62.2

Table 1: Scalability study for two trebecular bone datasets
using the Multi-Level Image Cache system. The rates are
tiles per second.

thus

α = 1−
√

1− γ

However, we have observed two issues with these formu-
las. First, these operations are performed on 8-bit integer val-
ues, and can be very error prone. Secondly, the structures in
the data are not placed uniformly in the associated region. If,
for example, the front half of the region associated with the
parent tile is empty, the child tile associated with that front
half will contain imagery belonging to the back half. This
is not a problem until one of the children is re-rendered. If
the front child is re-rendered, the overall contribution of the
front/back regions will decrease as they effectively become
more transparent. Similarly, if the back tile is re-rendered
first, the overall contribution will increase, and they effec-
tively become more opaque. Due to proximity and viewing
parameters, the front and back pairs are re-rendered at nearly
the same time, and therefore do not create a problem.

4.2.2 Merge

Merge a left/right, top/bottom, or front/back pair for form a
lower resolution image. This is used when the camera posi-
tion has not changed, but the region is less important (e.g.,
the user has turned the view frustum away). The left/right
and top/bottom pairs are produced by low-pass filtering or
sub-sampling, depending on which filtering mode used in the
original rendering. Merging a front/back pair is simply com-
positing the front and back pairs together.

4.2.3 Render

Simply render a region to an image. VTK is used as the
rendering engine, so anything that VTK can render can be
rendered and cached in our system.

5 Results

The results were obtained using a SGI Origin3000 computer
with 48 250MHz MIPS R10K processors. We use a trebecu-
lar bone dataset, which an extremely high-resolution scan of

1

2

4

8

16

32

64

1 2 4 8 16 32

Sp
ee

d-
U

p

Processors

ideal
2563

5123

Figure 7: A log-log plot of the scalability study for two tre-
becular bone datasets using the Multi-Level Image Cache
system.

Figure 8: Volume rendering a 2563 trebecular bone dataset
using the Multi-Level Image Cache system. Individual tiles
are outlined in yellow.

the spongy material inside of bones; the original 5403 dataset
is 1cm3. We measured the sustained rate at which render
tasks are performed by counting the number completed dur-
ing a fixed interval of 10 seconds. We did not measure sub-
divide or merge tasks, as they happen much less often, do
not occur in a sustained fashion, and take much less compu-
tational effort than rendering.

Our scalability study was performed using our MLIC sys-
tem, VTK’s off-screen rendering capability (via Mesa), and
VTK’s software-based ray-cast iso-surface engine to render
imagery. The image tiles all have a resolution of 1282 pixels.

The MLIC volume renderer experiences roughly linear
speed-up for a 2563 and 5123 versions of the trebecular



dataset, as shown in table 1 and figure 7. The apparent super-
linear speed-up for MLIC is due to the range of rates for dif-
ferent number of processors: runs with one processor show
much larger range in the number of tiles rendered per a sec-
ond than runs with 32 processors. Some tiles are more ex-
pensive to render than others; tiles that are more square touch
less memory than tiles that are long trapezoids. The rates for
runs with smaller numbers of processors should probably be
higher. As each processor has its own copy of the data, there
should be no super-linear scaling due to data fitting into the
processor caches.

6 Conclusion and Future Work

We have introduced our Multi-Level Image Caching system.
It maintains a set of image tiles for interactive display while a
set of parallel processes render new imagery. Our system has
successfully decoupled rendering rates from display rates, al-
lows for fairly slow rendering, while providing interactive
display of imagery. The system experiences linear scaling
on an Origin3000 SMP up to 32 processors.

Currently, our system uses a round-robin approach to up-
dating tiles. This is not sufficient when there are a large num-
ber of tiles being displayed. If there are a large number of
tiles, the rate at which tiles are update is slow, and it can be-
come difficult to navigate an environment. We plan to imple-
ment an error- and view-driven scheduler. We plan to replace
the rendering engine. There is considerable overhead for ren-
dering a frame in VTK, and it is not optimized for texture-
based volume visualization. Third, we plan to augment the
system to handle multiresolution, time-vary datasets. Last,
we plan to move our system to cluster of Linux worksta-
tions, as contemporary graphics cards are much faster than
the Origin3000’s InfiniteReality3 graphics subsystem.

Acknowledgments

This document was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, pro-
cess, or service by trade name, trademark, manufacturer, or oth-
erwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
the University of California. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be
used for advertising or product endorsement purposes. This work
was performed under the auspices of the U.S. Department of Energy
by University of California, Lawrence Livermore National Labora-
tory under Contract W-7405-Eng-48.

References

BETHEL, W., SHALF, J., LAU, S., GUNTER, D., LEE, J., TIERNEY, B.,
BECKNER, V., BRANDT, J., EVENSKY, D., CHEN, H., PAVEL, G.,
OLSEN, J., AND BODTKER, B. 2000. Visapult - Using High-speed
WANs and Network Data Caches to Enable Remote and Distributed Vi-
sualization. In Super Computing 2000, 118–119.

BLANKE, W., BAJAJ, C., FUSSELL, D., AND ZHANG, X. 2000. The
Metabuffer: A Scalable Multiresolution Multidisplay 3D Graphics Sys-
tem Using Commodity Rendering Engines. Technical Report TR2000-
16, University of Texas at Austin.

CARROZZINO, M., TECCHIA, F., FALCIONI, C., AND BERGAMASCO, M.
2001. Image caching algorithms and strategies for real time rendering of
complex virtual environments. In Afrigraph 2001, 65–74.

CHEN, B., SWAN, II., J., KUO, E., AND KAUFMAN, A. 1999. LOD-
Sprite Technique for Accelerated Terrain Rendering. In IEEE Visualiza-
tion 1999, 291–298.

DECORET, X., SILLION, F., SCHAUFLER, G., AND DORSEY, J. 1999.
Multi-layered impostors for accelerated rendering. Computer Graphics
Forum 18, 3 (Sept.), 61–73.

EYLES, J., MOLNAR, S., POULTON, J., GREER, T., LASTRA, A., ENG-
LAND, N., AND WESTOVER, L. 1997. PixelFlow: The Realization. In
Graphics Hardware Symposium, 57–68.

HP. Visualization Center SV6, http://www.hp.com.

LOMBEYDA, S., MOLL, L., SHAND, M., BREEN, D., AND HEIRICH,
A. 2001. Scalable Interactive Volume Rendering Using Off-the-Shelf
Components. In IEEE PVG 2001, 115–121, 158.

MONTRYM, J., BAUM, D., DIGNAM, D., AND MIGDAL, C. 1997. Infinite-
Reality: A Real-Time Graphics System. In Siggraph 1997, 293–302.

MUELLER, K., SHAREEF, N., HUANG, J., AND CRAWFIS, R. 1999. IBR-
Assisted Volume Rendering. In Hot Topics, Vis 1999, 1–4.

PORTER, T., AND DUFF, T. 1984. Compositing Digital Images. In Sig-
graph 1984, 253–259.

SCHAUFLER, G., AND STÜRZLINGER, W. 1996. A three-dimensional
image cache for virtual reality. In Eurographics 1996.

SCHAUFLER, G. 1998. Per-Object Image Warping with Layered Impostors.
In Rendering Techniques 1998, 145–156.

SGI, I. InfinitePerfomance, http://www.sgi.com.

SHADE, J., LISCHINSKI, D., SALESIN, D., DEROSE, T., AND SNYDER,
J. 1996. Hierarchical Image Caching for Accelerated Walkthroughs of
Complex Environments. In Siggraph 1996, 75–82.

SHADE, J., GORTLER, S., HE, L., AND SZELISKI, R. 1998. Layered
depth images. In Siggraph 1998, 231–242.

SIMMONS, M., AND SÉQUIN, C. 2000. Tapestry: A Dynamic Mesh-
based Display Representation for Interactive Rendering. In Rendering
Techniques 2000, 329–340.

STOLL, G., ELDRIDGE, M., PATTERSON, D., WEBB, A., BERMAN, S.,
LEVY, R., CAYWOOD, C., TAVEIRA, M., HUNT, S., AND HANRA-
HAN, P. 2001. Lightning-2: A High-Performance Display Subsystem
for PC Clusters. In Siggraph 2001, 141–148.


